IPv6 Security
Remember Extension Headers?

• IPv6 allows an optional *Extension Header* in between the IPv6 header and upper layer header
 – Allows adding new features to IPv6 protocol without major re-engineering

Next Header values:
0 Hop-by-hop option
2 ICMP
4 SRH
6 TCP
17 UDP
43 Source routing (RFC5095)
44 Fragmentation
50 Encrypted security payload
51 Authentication
59 Null (No next header)
60 Destination option
Extension Headers (RFC2460)

<table>
<thead>
<tr>
<th>Next Header Value</th>
<th>Name</th>
<th>Function</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Hop-by-Hop</td>
<td>To carry additional information (Ex: RSVP)</td>
<td>Must be examined by every node along the path</td>
</tr>
<tr>
<td>43</td>
<td>Routing Header</td>
<td>List nodes to be visited on its way to the destination</td>
<td>Deprecated by RFC 5095</td>
</tr>
<tr>
<td>44</td>
<td>Fragment Header</td>
<td>To fragment packets that do not fit the path MTU</td>
<td>By the source node</td>
</tr>
<tr>
<td>60</td>
<td>Destination Options</td>
<td>To carry optional information</td>
<td>Examined only by destination node</td>
</tr>
</tbody>
</table>
EHs - security nightmare?

• RFC2460 states:
 – “With one exception, extension headers are not examined or processed by any node along a packet’s delivery path, until the packet reaches the node
• Firewalls (stateful/stateless) should not inspect them?

 – But destination nodes must accept and process EH...
 • “any order and occurring any number of times in the same packet”
EHs - security nightmare?

- The number of EH is **NOT** limited
- The number of options within an Options header (Hop-by-hop and Destinations) is **NOT** limited
- The order of EH is **NOT** defined (only a recommendation)
 - RFC2460 “it is **recommended** that those headers appear in the following order”
Possible EH threat – covert channel

- Use the EH as a covert channel to exchange information (payload) undetected

<table>
<thead>
<tr>
<th>IPv6 Header</th>
<th>EH</th>
<th>Hidden Data</th>
<th>TCP header + data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Header = 4</td>
<td>Next header = 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Mitigation:
 - **Drop** unknown EH
 - Which means you need to inspect EH
Possible EH threat – Unlimited EHs

- Send packets with huge number of EH
 - EH chain itself is fragmented (L4 info could appear in Nth-fragment)
 - Overwhelm the destination node (DOS)
 - Evade IPS/IDS/Firewall
EH and Fragments

• Should we **DROP** all IPv6 fragments?
 – How does services like DNSSEC work?

• RFC7112
 – “When a host **fragments** an IPv6 datagram, it **MUST include the entire IPv6 Header Chain in the First Fragment**”
 • inspect and drop

• If you don’t want stateful inspection, you can use proprietary solutions
 – **undetermined-transport** (Cisco)
 • Drop fragments that do not have upper-layer headers in the first fragment
 deny any any [undetermined-transport]
ICMPv6 is important!

ICMPv6 Message Types

Error-Messages (1-127)

1: Destination Unreachable
2: Packet too big (PMTUD)
3: Time Exceeded (Hop Limit)
4: Parameter Problem

Info-Messages (Ping)

128: Echo Request
129: Echo Reply

Multicast Listener Discovery (MLD, MLD2)

130: Multicast Listener Query
131/143: Multicast Listener Report/2
132: Multicast Listener Done

Neighbor Discovery (NDP), **Stateless Autoconfiguration (SLAAC)**

133: Router Solicitation
134: Router Advertisement
135: Neighbor Solicitation (DAD)
136: Neighbor Advertisement (DAD)
137: Redirect Message

Other (Router Renumbering, Mobile IPv6, Inverse NS/NA, ...)

138-153

http://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
Filtering ICMPv6 (perimeter)

- Filtering ICMPv6 is not straightforward
 - You block ICMPv6 => you break IPv6!

- RFC4890: “ICMPv6 Filtering Recommendations”
 - **Permit** Error messages
 - Destination Unreachable (Type 1) - All codes
 - Packet Too Big (Type 2)
 - Time Exceeded (Type 3) - Code 0 only
 - Parameter Problem (Type 4) - Codes 1 and 2 only
 - **Permit** Connectivity check messages
 - Echo Request (Type 128)
 - Echo Response (Type 129)
Filtering ICMPv6 (perimeter)

- Some also recommend rate limiting ICMPv6

```plaintext
ipv6 access-list ICMPv6
    permit icmp any any
!
class-map match-all ICMPv6
    match protocol ipv6
    match access-group name ICMPv6
!
policy-map ICMPv6_RATE_LIMIT
    class ICMPv6
        police 100000 200000 conform-action transmit exceed-action drop
!
interface fa0/0
    service-policy input ICMPv6_RATE_LIMIT
```
IPv6 Bogons

- IPv6 has bogons too... filter them!

```plaintext
no ipv6 prefix-list v6-IN-FILTER
ipv6 prefix-list v6-IN-FILTER deny 2001::/32 le 128 ! Teredo subnets
ipv6 prefix-list v6-IN-FILTER deny 2001:db8::/32 le 128 ! Documentation
ipv6 prefix-list v6-IN-FILTER deny 2002::/16 le 128 ! 6to4 subnets
ipv6 prefix-list v6-IN-FILTER deny <your::/32> le 128 ! Your prefix
ipv6 prefix-list v6-IN-FILTER deny 3ffe::/16 le 128 ! Old 6bone
ipv6 prefix-list v6-IN-FILTER deny fc00::/7 le 128 ! ULA
ipv6 prefix-list v6-IN-FILTER deny fe00::/9 le 128 ! Reserved IETF
ipv6 prefix-list v6-IN-FILTER deny fe80::/10 le 128 ! Link-local
ipv6 prefix-list v6-IN-FILTER deny fec0::/10 le 128 ! Link-local
ipv6 prefix-list v6-IN-FILTER deny ff00::/8 le 128 ! Link-local
ipv6 prefix-list v6-IN-FILTER permit 2000::/3 le 48 ! Global Unicast
ipv6 prefix-list v6-IN-FILTER deny ::/0 le 128
```
Aside - Bogons

- Not all IP (v4 and v6) are allocated by IANA

- Addresses that should not be seen on the Internet are called “Bogons” (also called “Martians”)
 - RFC1918s + Reserved space

- IANA publishes list of number resources that have been allocated/assigned to RIRs/end-users
 - https://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-address-assignments.xhtml
 - https://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml
Bogons

• Commonly found as source addresses of DDoS packets

• We should have ingress and egress filters for bogon routes
 – Should not route them nor accept them from peers

• We could manually craft prefix filters based on the bogon list from IANA
 – But bogon list is dynamic
 – New allocations made out of reserved blocks frequently
Bogon Route Server Project

• In comes the Bogon Route Server project by Team Cymru
 • Provides dynamic bogons information using eBGP multihop sessions

 – Traditional bogons (AS65333)
 • martians plus prefixes not allocated by IANA

 – Full-bogons (AS65332)
 • above plus prefixes allocated to RIRs but not yet assigned to ISPs/end-users by RIRs

• For details:
Peering - Bogon Route Servers

• To peer with bogon route servers
 – Write to bogonrs@cymru.com

• You should provide:
 • Your ASN
 • Which bogons you wish to receive
 • Your peering addresses
 • MD5 for BGP?
 • PGP public key (optional)

• It is recommended to have at least 2 (two) peering sessions for redundancy
Source IP spoofing – Defense

• **BCP38** (RFC2827)
 – Since 1998!

• Only allow traffic with valid source addresses to
 – Leave your network
 • Only packets with source address from your own address space
 – To enter/transit your network
 • Only source addresses from downstream customer address space
uRPF – Unicast Reverse Path Path

- Unicast Reverse Path Forwarding (uRPF)
 - Router verifies if the source address of packets received is in the FIB table and reachable (routing table)
 - Else DROP!

- **Recommended on customer facing interfaces**

(config-if)#ipv6 verify unicast source reachable-via {rx|any}
uRPF – Unicast Reverse Path

• Modes of Operation:
 - **Strict**: verifies both source address and incoming interface with FIB entries
 - **Loose**: verifies existence of route to source address

ICMPv6 Attack Tools

- THC-IPv6
 - https://www.thc.org/thc-ipv6/

- SI6 Networks IPv6 Toolkit

- Chiron
 - http://www.secfu.net/tools-scripts/
Is this address unique?

Client sends Neighbor Solicitation (NS)

Attacker sends Neighbor Advertisement (NA) for each NS

This address is MINE!
ND Spoofing

What is Host B's MAC address?

I am Host B. This is my MAC.

Client sends Neighbor Solicitation (NS) asking for Host B's link layer address

Attacker Neighbor Advertisement (NA) Spoofs Host B, sends his own MAC
Rogue RA

Client sends Router Solicitation (RS)

Attacker sends Route Advertisement (RA)

Hosts autoconfigure IPv6 based on spoofed RA including default router (as well as other info - DNS)

Attacker default router

Attacker

Client

Hosts
Rogue RA

- Attacker can now intercept, listen and modify the packets coming from Host A and B – MITM
- Or redirect to a site they control
Mitigation tools

• RA Guard (RFC6105/7113)
 – messages between IPv6 devices traverse the controlled L2 networking device
 – first-hop security

• Allow or drop RA messages based on policies
Mitigation tools

• SEND (RFC3971)
 – Uses crypto to secure NDP messages
 • Uses CGA and a set of NDP options

• CGA (crypto–generated address):
 – CGA associates a public key with a IPv6 address
 • RSA signature option
 – Node computes interface-ID
 • Using hash-function of the node’s public key
 – and appends to the IPv6 prefix - CGA
Mitigation tools

• SEND (RFC3971)
 – The receiver recomputes the hash and compares with the interface-ID
 • Verifies the public key binding
 – Messages sent from a CGA address can be protected by attaching the public key and signing the message with private key.
References:

Questions