Intrusion Detection - Snort
Sometimes - Defenses Fail

• Our defenses aren’t perfect
 – Patches aren’t applied promptly enough
 – AV signatures not up to date
 – 0-days get through
 – Someone brings in an infected USB drive
 – An insider misbehaves

• Most penetrations are never detected
 – This allows continuing abuse, and helps the attackers spread elsewhere
Additional Monitoring

• Prevention is ideal, but DETECTION is a must!
 – Offense leads defense!
What can IDS possibly do?

• Detect strange patterns or behaviors
• Detect things that should not be there
 – abnormalities
• Help contain attacks before they spread
• Match activities against known attacks
• Classify good or bad traffic
 – tuning
What IDS cannot do?

• Compensate for
 – weak authentication and identification mechanisms
 – weakness in network protocols or configuration errors

• Investigate attack patterns without human intervention

• Guess your organization’s security policy
Monitoring Point

- Specific rules closer to the end hosts/nodes
- Generic activities on the network
Network and Host IDS
Types of Detection

• Signature based
 – Match patterns/characteristics of known attacks
 • Signatures need to be updated and only known issues detected

• Anomaly based
 – Look for any unusual behaviour
 • Anything that deviates from what is considered normal

• Darknet
 – Monitor inbound traffic to unlit (dark) IPs
 • Why?

• Honeypot
 – Set a trap!
 – Its value lies in being being compromised
 • Log any activity and setup triggers/notifications
 • Helps understand an attacker’s methodology, identify vulnerabilities
IDS Technology landscape

TECHNOLOGY LANDSCAPE

- **Vulnerability Assessment (Scheduled)**
 - Network-based Vulnerability Scanners
 - Host-based Vulnerability Assessment

- **Systems**
 - File Integrity Checkers
 - Host-based Intrusion Detection

- **Networks**
 - Network-based Intrusion Detection

- **Intrusion Detection (Real-time)**

Preventive

Real Time

APNIC
Alert

- Depending on how you tune your detection engine/rules
 - You may receive millions of alerts (too strict)
 - You may miss out on critical events (too loose)
Alert

• False-positive
 – System raising an incorrect alert
 – Incorrect rejection of a true null hypothesis

• False-negative
 – Does not detect an attack
 – Failure to reject a false null hypothesis
Intrusion Detection for ISPs

• Monitor your own network
• Monitor your customer networks
 – Good:
 • you can help them detect problems and prevent malicious traffic clogging your network infra
 – Bad:
 • privacy-invasive
SNORT

• Open source IDS (one of the oldest ones)
 – Hundreds of thousands of users

• Active development of rules by the community
 – Upto date (often more than commercial alternatives)

• It is fast
 – With the right HW and proper tuning
Getting Snort to see the network

• You can run Snort in multiple ways
 – In-line (behind firewalls)
 • Could help test your firewall rules
 • But, one more element that could fail (single point?)
 – In-line (in front of firewalls)
 • Too many alerts!
 – SPAN/mirror traffic to Snort
 – Tap on the physical link (optical splitter)
Port Mirroring

Outside

Mirror

Inside

Snort
Getting Snort to see the network

• Be careful not to overload switch port
 – You do not want to mirror multiple gigabit ports to a single GE port
 – Could drop packets if the traffic exceeds 1Gbps
Port Mirroring

• You can mirror
 – one port to another,
 – a group ports to one port
 – An entire VLAN to a port

Example: Cisco Catalyst

(config)#monitor session <sess#> source <int-ID/VLAN-id>
(config)#monitor session <sess#> destination <int-ID/VLAN-id>
Snort configuration file

- By default: /etc/snort/snort.conf
 - A long file (900+ lines of code)
 - Many **pre-processor** entries
 - Snort pre-processors help examine packets for suspicious activities, or
 - Modify them to be interpreted correctly by the detection rules
 (processor codes are run before detection engine is called)
SNORT Rules

• Snort rules are plain-text files

• Adding new rules is as easy as dropping the files to /etc/snort/rules directory

• Rules can be loaded from snort.conf with the “include” statement

• Rules can match anything
 – Technical: port scans, web attacks, buffer overflow, etc.
 – Policies: URL filters, keywords, etc.
Tailoring the rules

- Not all rules (default) will be applicable to your network
 - You customise/pick which rules you want to run
 - Else, to many false positives or to many alerts
 - Might tempt you to ignore the alerts or even turn it off

- You can suppress/disable rules you don’t need
Updating Snort rules

• Commercially maintained (Cisco) Snort rules are available for free after 30 days delay
 – http://www.snort.org/start/rules

• Volunteers also maintain rule sets
 – http://rules.emergingthreats.net/open/

• You can automate updating of rules using “Pulled Pork”
 – http://code.google.com/p/pulledpork/
Snort rules

• Snort rules have two sections
 – Rule Header and Rule options

• Rule header contains
 – the rule's action, protocol, src/dst addresses, and src/dst ports information

• Rule options contain
 – alert messages and information on which parts of the packet should be inspected for the action to be taken

Snort rules

action protocol ip-addr port -> ip-addr port (rule option1; option2)

alert tcp $EXTERNAL_NET any -> $HOME_NET 22 (msg: "SSH Detected"; sid:10; rev:1;)

• The text up to first parenthesis – rule header
• Enclosed in parenthesis – rule options
 – words before colons in the options are called “option keywords”
Snort Rule actions

- **alert** - generate an alert using the selected alert method, and then log the packet

- **log** – log the packet

- **pass** – ignore the packet

- **drop** – block and log the packet

- **reject** – block the packet, log it, and send TCP reset if protocol is TCP, or an ICMP port unreachable if it is UDP

- **sdrop** – block the packet without logging
Snort rules: direction

• The direction operator \(\rightarrow\) indicates the orientation, or direction, of the traffic that the rule applies to.
• There is no \(\leftarrow\) operator.
• Bidirectional operator \(\leftrightarrow\)
Snort rules : sid

• The Snort ID (sid):
 – Uniquely identifies snort rules (similar to ACL numbers)
 • 0-99 reserved for future use
 • 100-1,000,000 reserved for rules in Snort distribution
 • >1,000,000 can be used to define local rules
Snort rules : rev

• The revision number (rev)
 – Allows rules to be refined and updated
Snort rules : classtype

- Rules can be classified and assigned priority numbers
 - to group and distinguish them (low and high priority alerts)
 - Priorities 1-4 (High, Medium, Low, very low)

- Attack classifications defined by Snort resides in /etc/snort/classification.config

```
config classification: DoS, Denial of Service Attack, 2
```

<table>
<thead>
<tr>
<th>Class Name</th>
<th>Class Description</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DoS, Denial of Service Attack</td>
<td>2</td>
</tr>
</tbody>
</table>
Sample rules

```
alert tcp msg:"MYSQL root login attempt";
flow:to_server,established; content:"|0A 00 00 01 85 04 00 00 80|root|00|"; classtype:protocol-command-decode; sid:1775; rev:2;)

alert tcp $EXTERNAL_NET any -> $SQL_SERVERS 3306 (msg:"MYSQL show databases attempt"; flow:to_server,established; content:"|0F 00 00 00 03|show databases"; classtype:protocol-command-decode; sid:1776; rev:2;)

alert tcp $EXTERNAL_NET any -> $SQL_SERVERS 3306 (msg:"MYSQL 4.0 root login attempt"; flow:to_server,established; content:"|01|"; within:1; distance:3; content:"root|00|"; within:5; distance:5; nocase; classtype:protocol-command-decode; sid:3456; rev:2;)
```
Reporting and logging

• Snort can be made to log alerts to an SQL database, for easier searching

• A web front-end for Snort, **BASE**, allows one to browse security alerts graphically
BASE - Basic Analysis and Security Engine

Basic Analysis and Security Engine (BASE)

- Today's alerts:
- Last 24 Hours alerts:
- Last 72 Hours alerts:
- Most recent 15 Alerts:
- Last Source Ports:
- Last Destination Ports:
- Most Frequent Source Ports:
- Most Frequent Destination Ports:
- Most frequent 15 Addresses:
- Most recent 15 Unique Alerts:
- Most frequent 5 Unique Alerts

Added 2 alert(s) to the Alert cache
Quoted on: Thu Jul 26, 2006 12:52:57
Database: apnic@localhost (Schema Version: 100)

Search
Graph Alert Data
Graph Alert Detection Time
Use Archive Database

Sensors/Total: 1 / 1
Unique Alerts: 8
Categories: 3
Total Number of Alerts: 83
- Src. IP addr.: 7
- Dest. IP addr.: 28
- Unique IP links: 33
- Source Ports: 7
 - TCP: 7
 - UDP: 0
- Dest. Ports: 2
 - TCP: 2
 - UDP: 0

Traffic Profile by Protocol
- TCP (6%)
- UDP (0%)
- ICMP (11%)

Portscan Traffic (60%)

Alert Group Maintenance | Cache & Status | Administration
BASE 1.1.3 (lynn) (by Kevin Johnson and the BASE Project Team
Built on ACID by Roman Danyliv)
BASE - Basic Analysis and Security Engine

Alert Listing

Queried DB on: Thu June 06, 2002 00:01:19

Meta Criteria: any
IP Criteria: any
Layer 4 Criteria: none
Payload Criteria: any

Displaying alerts 1-3 of 3 total

<table>
<thead>
<tr>
<th>Signature</th>
<th>Classification</th>
<th>Total #</th>
<th>Sensor #</th>
<th>Src. Addr.</th>
<th>Dest. Addr.</th>
<th>First</th>
<th>Last</th>
</tr>
</thead>
<tbody>
<tr>
<td>[arachNIDS] ICMP PING NMAP</td>
<td>attempted-recon</td>
<td>1 (9%)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>22:55:00</td>
<td>22:55:00</td>
</tr>
<tr>
<td>[bugtraq] [CVE] [arachNIDS] NETBIOS INT NULL session</td>
<td>attempted-recon</td>
<td>8 (73%)</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>20:52:50</td>
<td>23:32:28</td>
</tr>
</tbody>
</table>

Action:
- [] action
- Selected
- ALL on Screen

ACID v0.9.6621 (by Roman Danyliw as part of the AirCERT project)
References and documentation

- Snort preprocessors:

- Snort documentation
 - https://www.snort.org/documents#OfficialDocumentation

- Writing SNORT Rules
Lab Exercise
Setup

• Follow lab manual to install SNORT and check the basic SNORT rules.
Exercise : 1

• Write a rule to detect XMAS scans against your server
 - XMAS scan sets the FIN, PSH, URG flags
 – Check the rules with nmap
 nmap -sX <SERVER_IP>

RFC 793 - any TCP segment with an out-of-state Flag sent to an open port is discarded, whereas segments with out-of-state flags sent to closed ports should be handled with a RST in response.

> Allows an attacker to scan for closed ports by sending certain types of rule-breaking packets and detect closed ports via RST packets” – https://capec.mitre.org/data/definitions/303.html
Exercise : 2

• Write a rule to detect any attempt from outside (external) your network to access your webserver’s /admin pages

Content Matching
Exercise : 3

• Write a rule to check SSH brute force attack and log the IP (more than 3 times in 60 seconds)

detection_filter:track by_src, count 3, seconds 60;